'; ?> geneimprint : Hot off the Press http://www.geneimprint.com/site/hot-off-the-press Daily listing of the most recent articles in epigenetics and imprinting, collected from the PubMed database. en-us Wed, 28 Sep 2022 06:38:06 EDT Wed, 28 Sep 2022 06:38:06 EDT jirtle@radonc.duke.edu james001@jirtle.com EWSR1::YY1 fusion positive peritoneal epithelioid mesothelioma harbors mesothelioma epigenetic signature: Report of 3 cases in support of an emerging entity. Dermawan JK, Torrence D, Lee CH, Villafania L, Mullaney KA, DiNapoli S, Sukhadia P, Benayed R, Borsu L, Agaram NP, Nash GM, Dickson BC, Benhamida J, Antonescu CR
Genes Chromosomes Cancer (10 2022)

Mesothelioma is a rare, aggressive malignant neoplasm of mesothelial origin. A small subset of peritoneal mesothelioma is driven by recurrent gene fusions, mostly EWSR1/FUS::ATF1 fusions, with predilection for young adults. To date, only two cases of mesothelioma harboring EWSR1::YY1 fusions have been described. We present three additional cases of EWSR1::YY1-fused peritoneal mesotheliomas, two localized and one diffuse, all occurring in the peritoneum of middle-aged adults (2 females and 1 male), and discovered incidentally by imaging or during surgery performed for unrelated reasons. None presented with symptoms or had a known history of asbestos exposure. All three cases were cellular epithelioid neoplasms with heterogeneous architectural patterns comprising mostly solid nests and sheets with variably papillary and trabecular areas against collagenous stroma. Cytologically, the cells were monomorphic, polygonal, epithelioid cells with dense eosinophilic cytoplasm and centrally located nuclei. Overt mitotic activity or tumor necrosis was absent. All cases showed strong diffuse immunoreactivity for pancytokeratin, CK7, and nuclear WT1, patchy to negative calretinin, retained BAP1 expression, and were negative for Ber-EP4 and MOC31. RNA-sequencing confirmed in-frame gene fusion transcripts involving EWSR1 exon 7/8 and YY1 exon 2/3. By unsupervised clustering analysis, the methylation profiles of EWSR1::YY1-fused mesotheliomas clustered similarly with EWSR1/FUS::ATF1-fused mesotheliomas and conventional mesotheliomas, suggesting a mesothelioma epigenetic signature. All three patients underwent surgical resection or cytoreductive surgery of the masses. On follow-up imaging, no recurrence or progression of disease was identified. Our findings suggest that EWSR1::YY1-fusion defines a small subset of peritoneal epithelioid mesothelioma in middle-aged adults without history of asbestos exposure.]]>
Wed, 31 Dec 1969 19:00:00 EST
Robustness and the generalist niche of polyploid species: Genome shock or gradual evolution? Shimizu KK
Curr Opin Plant Biol (Oct 2022)

The prevalence of polyploidy in wild and crop species has stimulated debate over its evolutionary advantages and disadvantages. Previous studies have focused on changes occurring at the polyploidization events, including genome-wide changes termed "genome shock," as well as ancient polyploidy. Recent bioinformatics advances and empirical studies of Arabidopsis and wheat relatives are filling a research gap: the functional evolutionary study of polyploid species using RNA-seq, DNA polymorphism, and epigenomics. Polyploid species can become generalists in natura through environmental robustness by inheriting and merging parental stress responses. Their evolvability is enhanced by mutational robustness working on inherited standing variation. The identification of key genes responsible for gradual adaptive evolution will encourage synthetic biological approaches to transfer polyploid advantages to other species.]]>
Wed, 31 Dec 1969 19:00:00 EST
Deciphering Epigenetic Backgrounds in a Korean Cohort with Beckwith-Wiedemann Syndrome. Kim HY, Shin CH, Lee YA, Shin CH, Kim GH, Ko JM
Ann Lab Med (Nov 2022)

Beckwith-Wiedemann syndrome (BWS) is a congenital overgrowth disorder caused by genetic or epigenetic alterations at two imprinting centers (ICs) in the 11p15.5 region. Delineation of the molecular defects is important for prognosis and predicting familial recurrence. We evaluated epigenetic alterations and potential epigenotype-phenotype correlations in Korean children with BWS.]]>
Wed, 31 Dec 1969 19:00:00 EST
Making sense of the ageing methylome. Seale K, Horvath S, Teschendorff A, Eynon N, Voisin S
Nat Rev Genet (10 2022)

Over time, the human DNA methylation landscape accrues substantial damage, which has been associated with a broad range of age-related diseases, including cardiovascular disease and cancer. Various age-related DNA methylation changes have been described, including at the level of individual CpGs, such as differential and variable methylation, and at the level of the whole methylome, including entropy and correlation networks. Here, we review these changes in the ageing methylome as well as the statistical tools that can be used to quantify them. We detail the evidence linking DNA methylation to ageing phenotypes and the longevity strategies aimed at altering both DNA methylation patterns and machinery to extend healthspan and lifespan. Lastly, we discuss theories on the mechanistic causes of epigenetic ageing.]]>
Wed, 31 Dec 1969 19:00:00 EST
Epigenetic dysregulation in autophagy signaling as a driver of viral manifested oral carcinogenesis. Patra S, Patil S, Das S, Bhutia SK
Biochim Biophys Acta Mol Basis Dis (Nov 2022)

Concurrent viral infections insist on dysregulated epigenetics of tumor suppressor genes (TSGs), cell cycle regulators, apoptosis, and autophagy-associated genes to manifest oral carcinogenesis. Autophagy has been projected as a strategic defense signaling cascade against viral entry and subsequent oral carcinogenesis. Compromised autophagy signaling during viral infection fuels oral cancer initiation and progression.]]>
Wed, 31 Dec 1969 19:00:00 EST
Two infants with mild, atypical clinical features of Kagami-Ogata syndrome caused by epimutation. Higashiyama H, Ohsone Y, Takatani R, Futatani T, Kosaki R, Kagami M
Eur J Med Genet (Oct 2022)

Kagami-Ogata syndrome (KOS) is an imprinting disorder characterized by polyhydramnios, bell-shaped thorax with coat-hanger appearance (curved ribs), respiratory distress, abdominal wall defects, and distinct facial features, together with intellectual developmental delay with special needs. Abnormal expression of the imprinted genes on chromosome 14q32.2 causes KOS. Epimutation with aberrant hypermethylation of the MEG3/DLK1: intergenic differentially methylated region (MEG3/DLK1:IG-DMR) and the MEG3:TSS-DMR is one of the etiologies of KOS. We report two infants with KOS caused by epimutation presenting with some characteristic clinical features, mild clinical course, and almost normal motor and intellectual development. Methylation analysis for ten DMRs related to major imprinting disorders using pyrosequencing with genomic DNA (gDNA) extracted from leukocytes showed abnormally increased methylation levels of the MEG3/DLK1:IG-DMR and MEG3:TSS-DMR in both patients, but lower than those in patients with paternal uniparental disomy chromosome 14 (upd(14)pat). The methylation levels in the DMRs other than both DMRs were within normal range. We also conducted methylation analysis for the MEG3/DLK1:IG-DMR and MEG3:TSS-DMR with gDNA extracted from nails and buccal cells of both patients. Methylation levels in the MEG3:TSS-DMR, particularly in buccal cells, were closer to normal range compared to those in leukocytes. Microsatellite analysis for chromosome 14 and array comparative hybridization analysis showed no upd(14)pat or microdeletion involving the 14q32.2 imprinted region in either patient. A differential mosaic ratio of cells with aberrant methylation of DMRs at the 14q32.2 imprinted region among tissues (connective tissue, lung, and brain) might have led to their atypical clinical features. Further studies of patients with epimutation should further expand the phenotypic spectrum of KOS.]]>
Wed, 31 Dec 1969 19:00:00 EST
Genetics and epigenetics of self-injurious thoughts and behaviors: Systematic review of the suicide literature and methodological considerations. Mirza S, Docherty AR, Bakian A, Coon H, Soares JC, Walss-Bass C, Fries GR
Am J Med Genet B Neuropsychiatr Genet (Oct 2022)

Suicide is a multifaceted and poorly understood clinical outcome, and there is an urgent need to advance research on its phenomenology and etiology. Epidemiological studies have demonstrated that suicidal behavior is heritable, suggesting that genetic and epigenetic information may serve as biomarkers for suicide risk. Here we systematically review the literature on genetic and epigenetic alterations observed in phenotypes across the full range of self-injurious thoughts and behaviors (SITB). We included 577 studies focused on genome-wide and epigenome-wide associations, candidate genes (SNP and methylation), noncoding RNAs, and histones. Convergence of specific genes is limited across units of analysis, although pathway-based analyses do indicate nervous system development and function and immunity/inflammation as potential underlying mechanisms of SITB. We provide suggestions for future work on the genetic and epigenetic correlates of SITB with a specific focus on measurement issues.]]>
Wed, 31 Dec 1969 19:00:00 EST
The influence of phytochemicals on cell heterogeneity in chronic inflammation-associated diseases: the prospects of single cell sequencing. Xiao F, Farag MA, Xiao J, Yang X, Liu Y, Shen J, Lu B
J Nutr Biochem (Oct 2022)

Chronic inflammation-associated diseases include, but is not limited to cardiovascular disease, cancer, obesity, diabetes, etc. Cell heterogeneity is a prerequisite for understanding the physiological and pathological development of cell metabolism, and its response to external stimuli. Recently, dietary habits based on phytochemicals became increasingly recognized to play a pivotal role in chronic inflammation. Phytochemicals can relieve chronic inflammation by regulating inflammatory cell differentiation and immune cell response, but the influence of phytochemicals on cell heterogeneity from in vitro and ex vivo studies cannot simulate the complexity of cell differentiation in vivo due to the differences in cell lines and extracellular environment. Therefore, there is no consensus on the regulation mechanism of phytochemicals on chronic diseases based on cell heterogeneity. The purpose of this review is to summarize cell heterogeneity in common chronic inflammation-associated diseases and trace the effects of phytochemicals on cell differentiation in chronic diseases development. More importantly, by discussing the problems and challenges which hinder the study of cell heterogeneity in recent nutritional assessment experiments, we propose new prospects based on the drawbacks of existing research to optimize the research on the regulation mechanism of phytochemicals on chronic diseases. The need to explore precise measurements of cell heterogeneity is a key pillar in understanding the influence of phytochemicals on certain diseases. In the future, deeper understanding of cell-to-cell variation and the impact of food components and their metabolites on cell function by single-cell genomics and epigenomics with the focus on individual differences will open new avenues for the next generation of health care.]]>
Wed, 31 Dec 1969 19:00:00 EST
PMM2 and NARFL are paternally imprinted genes in bovines. Dong Y, Zhang C, Jin L, Li D, Chen W, Huo H, Li S
Anim Genet (Oct 2022)

In mammals, imprinted genes are required for both fetal development and postnatal growth. A novel candidate imprinted locus was found on human chromosome 16, and maternal uniparental disomy of this locus can cause a lethal developmental lung disease in human newborns. The PMM2 and NARFL genes are located in this region and its homologous region in cattle is on chromosome 25. Currently, there is no report on the genomic imprinting of the PMM2 and NARFL genes. In this study, we demonstrated that PMM2 and NARFL are two paternally imprinted genes in bovines using an SNP-based method. In addition, two differentially methylated regions of paternal methylation were found in the promoter region and the third intron of the bovine NARFL gene, which may be involved in regulating its imprinted expression. However, we did not find differential methylation in the promoter region or the seventh intron of the bovine PMM2 gene.]]>
Wed, 31 Dec 1969 19:00:00 EST
Metabolic reprogramming and epigenetic modifications on the path to cancer. Sun L, Zhang H, Gao P
Protein Cell (12 2022)

Metabolic rewiring and epigenetic remodeling, which are closely linked and reciprocally regulate each other, are among the well-known cancer hallmarks. Recent evidence suggests that many metabolites serve as substrates or cofactors of chromatin-modifying enzymes as a consequence of the translocation or spatial regionalization of enzymes or metabolites. Various metabolic alterations and epigenetic modifications also reportedly drive immune escape or impede immunosurveillance within certain contexts, playing important roles in tumor progression. In this review, we focus on how metabolic reprogramming of tumor cells and immune cells reshapes epigenetic alterations, in particular the acetylation and methylation of histone proteins and DNA. We also discuss other eminent metabolic modifications such as, succinylation, hydroxybutyrylation, and lactylation, and update the current advances in metabolism- and epigenetic modification-based therapeutic prospects in cancer.]]>
Wed, 31 Dec 1969 19:00:00 EST
The bovine Prader-Willi/Angelman imprinted domain has four Sno-lncRNAs types. Chen W, Ma C, Dong Y, Li S
Anim Genet (Oct 2022)

Sno-lncRNAs are intron-derived long noncoding RNAs (lncRNAs) with snoRNA ends. Sno-lncRNAs were first discovered in the human Prader-Willi (PWS)/Angelman (AS) imprinted domain. Here, we report the identification and characterization of four sno-lncRNA types (sno-lncRNA1, sno-lncRNA2, sno-lncRNA3, and sno-lncRNA4) in the bovine PWS/AS imprinted domain. Reverse transcription-PCR first determined the cDNA sequences of the four bovine sno-lncRNAs. A gene structure analysis showed that sno-lncRNA1 lacks introns, but sno-lncRNA2 and sno-lncRNA3 have one and two introns respectively. The three sno-lncRNAs have similar snoRNA ends. Moreover, the three have similar snoRNAs at their 5' and 3' ends. The head-to-tail orientation has six sno-lncRNA copies arranged between bovine SNORD116-6 and SNORD116-12. Moreover, only a copy of sno-lncRNA4 was located between SNORD116-3 and SNORD116-4. The expression of the four sno-lncRNAs was analyzed in the bovine heart, liver, spleen, lung, kidney, muscle, fat, brain, and placenta tissues. The monoallelic expression of sno-lncRNA4 was determined in bovine tissues. The results showed that the four sno-lncRNAs are widely expressed in the nine tissues, although sno-lncRNA3 and sno-lncRNA4 were undetected in the placenta. Moreover, an informative single nucleotide polymorphism (rs448706424) revealed the allelic expression of sno-lncRNA4 in exon 2 of sno-lncRNA4. The bovine genome had six copies of sno-lncRNA1, sno-lncRNA2, and sno-lncRNA3, but their allelic expression was not identified.]]>
Wed, 31 Dec 1969 19:00:00 EST
Genomic imprinting regulates establishment and release of seed dormancy. Sato H, Köhler C
Curr Opin Plant Biol (Oct 2022)

Seed dormancy enables plant seeds to time germination until environmental conditions become favorable for seedling survival. This trait has high adaptive value and is of great agricultural relevance. The endosperm is a reproductive tissue formed after fertilization that in addition to support embryo growth has major roles in establishing seed dormancy. Many genes adopt parent-of-origin specific expression patterns in the endosperm, a phenomenon that has been termed genomic imprinting. Imprinted genes are targeted by epigenetic mechanisms acting before and after fertilization. Recent studies revealed that imprinted genes are involved in establishing seed dormancy, highlighting a new mechanism of parental control over this adaptive trait. Here, we review the regulatory mechanisms establishing genomic imprinting and their effect on seed dormancy.]]>
Wed, 31 Dec 1969 19:00:00 EST
Hypomethylation of miR-17-92 cluster in lupus T cells and no significant role for genetic factors in the lupus-associated DNA methylation signature. Coit P, Roopnarinesingh X, Ortiz-Fernández L, McKinnon-Maksimowicz K, Lewis EE, Merrill JT, McCune WJ, Wren JD, Sawalha AH
Ann Rheum Dis (Oct 2022)

Lupus T cells demonstrate aberrant DNA methylation patterns dominated by hypomethylation of interferon-regulated genes. The objective of this study was to identify additional lupus-associated DNA methylation changes and determine the genetic contribution to epigenetic changes characteristic of lupus.]]>
Wed, 31 Dec 1969 19:00:00 EST
DNA methylation profile of a rural cohort exposed to early-adversity and malnutrition: An exploratory analysis. Gomez-Verjan JC, Esparza-Aguilar M, Martín-Martín V, Salazar-Pérez C, Cadena-Trejo C, Gutiérrez-Robledo LM, Arroyo P
Exp Gerontol (Oct 2022)

Barker's hypothesis affirms that undernourishment in early-life induces metabolic reprogramming that compromises organism functions later in life, leading to age-related diseases. We are exposed to environmental and social conditions that impact our life trajectories, leading to ageing phenotypes as we grow. Epigenetic mechanisms constitute the link between both external stimuli and genetic programming. Studies have focused on describing the effect of early adverse events such as trauma, famines, or childhood labor on epigenetic markers in adulthood and the elderly. However, we lack information on epigenetic programming in individuals born in rural communities from underdeveloped countries, exposed to negative influences during fetal and postnatal development, particularly chronic malnutrition. Hence, in this exploratory analysis, we characterize the epigenome of individuals and some parents from Tlaltizapan (a rural community in Mexico originally studied almost 50 years ago) and collect anthropometric data on growth and development, as well on the living conditions of the families. Our results help build a biological hypothesis indicating that most of the epigenetic age measures of the subjects are significantly different among them. Interestingly, the most affected methylated regions correspond to pathways involved in neuronal system development, reproductive behaviour, learning and memory regulation.]]>
Wed, 31 Dec 1969 19:00:00 EST
Transcriptomic and epigenomic landscapes of Alzheimer's disease evidence mitochondrial-related pathways. Marmolejo-Garza A, Medeiros-Furquim T, Rao R, Eggen BJL, Boddeke E, Dolga AM
Biochim Biophys Acta Mol Cell Res (10 2022)

Alzheimers disease (AD) is the main cause of dementia and it is defined by cognitive decline coupled to extracellular deposit of amyloid-beta protein and intracellular hyperphosphorylation of tau protein. Historically, efforts to target such hallmarks have failed in numerous clinical trials. In addition to these hallmark-targeted approaches, several clinical trials focus on other AD pathological processes, such as inflammation, mitochondrial dysfunction, and oxidative stress. Mitochondria and mitochondrial-related mechanisms have become an attractive target for disease-modifying strategies, as mitochondrial dysfunction prior to clinical onset has been widely described in AD patients and AD animal models. Mitochondrial function relies on both the nuclear and mitochondrial genome. Findings from omics technologies have shed light on AD pathophysiology at different levels (e.g., epigenome, transcriptome and proteome). Most of these studies have focused on the nuclear-encoded components. The first part of this review provides an updated overview of the mechanisms that regulate mitochondrial gene expression and function. The second part of this review focuses on evidence of mitochondrial dysfunction in AD. We have focused on published findings and datasets that study AD. We analyzed published data and provide examples for mitochondrial-related pathways. These pathways are strikingly dysregulated in AD neurons and glia in sex-, cell- and disease stage-specific manners. Analysis of mitochondrial omics data highlights the involvement of mitochondria in AD, providing a rationale for further disease modeling and drug targeting.]]>
Wed, 31 Dec 1969 19:00:00 EST
DNA methylation mediates a randomized controlled trial home-visiting intervention during pregnancy and the Bayley infant's cognitive scores at 12 months of age. Euclydes VLV, Gastaldi VD, Feltrin AS, Hoffman DJ, Gouveia G, Cogo H, Felipe-Silva A, Vieira RP, Miguel EC, Polanczyk GV, Chiesa A, Fracolli L, Matijasevich A, Ferraro A, Argeu A, Maschietto M, Brentani HP
J Dev Orig Health Dis (Oct 2022)

The crosstalk between maternal stress exposure and fetal development may be mediated by epigenetic mechanisms, including DNA methylation (DNAm). To address this matter, we collect 32 cord blood samples from low-income Brazilian pregnant adolescents participants of a pilot randomized clinical intervention study (ClinicalTrials.gov, Identifier: NCT02807818). We hypothesized that the association between the intervention and infant neurodevelopmental outcomes at 12 months of age would be mediated by DNAm. First, we searched genome methylation differences between cases and controls using different approaches, as well as differences in age acceleration (AA), represented by the difference of methylation age and birth age. According to an adjusted -value ≤ 0.05 we identified 3090 differentially methylated positions- CpG sites (DMPs), 21 differentially methylated regions (DMRs) and one comethylated module weakly preserved between groups. The intervention group presented a smaller AA compared to the control group ( = 0.025). A logistic regression controlled by sex and with gestational age indicated a coefficient of -0.35 towards intervention group ( = 0.016) considering AA. A higher cognitive domain score from Bayley III scale was observed in the intervention group at 12 months of age. Then, we performed a potential causal mediation analysis selecting only DMPs highly associated with the cognitive domain (adj. > 0.4), DMRs and CpGs of hub genes from the weakly preserved comethylated module and epigenetic clock as raw values. DMPs in , and DMR, mediated the association between the maternal intervention and the cognitive domain at 12 months of age. In conclusion, DNAm in different sites and regions mediated the association between intervention and cognitive outcome.]]>
Wed, 31 Dec 1969 19:00:00 EST
Hormetic association between perceived stress and human epigenetic aging based on resilience capacity. Bergquist SH, Wang D, Smith AK, Roberts DL, Moore MA
Biogerontology (10 2022)

Chronic stress is associated with deleterious health outcomes and mortality risk. A potential mechanism by which stress affects healthspan and lifespan is acceleration of cellular aging. Biologic age prediction models, termed epigenetic clocks, have been developed to estimate biologic age differences among people with the same chronologic age. This study evaluates the simultaneous impact of perceived chronic stress and resilience on Grim Age acceleration. The perceived stress score (PSS) and Connor-Davidson Resilience Scale (CD-RISC) were used to measure chronic stress and resilience, respectively. DNA was extracted from whole blood and analyzed using the MethylationEPIC BeadChip. GrimAge estimates were calculated using the methylation age calculator. Forty-seven business executives were categorized by levels of high or low stress and resilience scores. Compared to participants with low stress and high resilience, those with low stress and low resilience demonstrated the strongest association with Grim Age acceleration (p = 0.044), after controlling for age and estimated cellular proportions. Interestingly, among participants with low resilience, those with high perceived stress had a weaker association with Grim Age acceleration than participants with low perceived stress. However, among participants with high resilience, low perceived stress had a weaker association with Grim Age acceleration than high perceived stress. Our findings suggest that the impact of perceived stress on epigenetic age acceleration may differ based on resilience capacity, with a potential paradoxical beneficial effect among those with low resilience.]]>
Wed, 31 Dec 1969 19:00:00 EST
The placental exposome, placental epigenetic adaptations and lifelong cardio-metabolic health. Cleal JK, Poore KR, Lewis RM
Mol Aspects Med (10 2022)

The placental exposome represents the sum of all placental exposures, and through its influence on placental function can affect an individual's susceptibility to cardio-metabolic disease later in life. The placental exposome includes direct exposures during gestation, as well as those prior to gestation that affect the gametes or aspects of maternal physiology that influence placental function. This review will discuss the evidence for placental responses to environmental signals and its involvement in programming offspring health. A wide range of exposures may influence the placenta including maternal metabolic and endocrine status, nutrition, stress and toxins. Epigenetic changes within the placenta induced by these exposures may mediate persistent effects on placental function. Identifying which exposures are most influential in terms of placental function and offspring health is key to focusing future research and developing stratified and personalised interventions.]]>
Wed, 31 Dec 1969 19:00:00 EST
Clinical and molecular characterization of patients affected by Beckwith-Wiedemann spectrum conceived through assisted reproduction techniques. Carli D, Operti M, Russo S, Cocchi G, Milani D, Leoni C, Prada E, Melis D, Falco M, Spina J, Uliana V, Sara O, Sirchia F, Tarani L, Macchiaiolo M, Cerrato F, Sparago A, Pignata L, Tannorella P, Cardaropoli S, Bartuli A, Riccio A, Ferrero GB, Mussa A
Clin Genet (10 2022)

The prevalence of Beckwith-Wiedemann spectrum (BWSp) is tenfold increased in children conceived through assisted reproductive techniques (ART). More than 90% of ART-BWSp patients reported so far display imprinting center 2 loss-of-methylations (IC2-LoM), versus 50% of naturally conceived BWSp patients. We describe a cohort of 74 ART-BWSp patients comparing their features with a cohort of naturally conceived BWSp patients, with the ART-BWSp patients previously described in literature, and with the general population of children born from ART. We found that the distribution of UPD(11)pat was not significantly different in ART and naturally conceived patients. We observed 68.9% of IC2-LoM and 16.2% of mosaic UPD(11)pat in our ART cohort, that strongly differ from the figure reported in other cohorts so far. Since UPD(11)pat likely results from post-fertilization recombination events, our findings allows to hypothesize that more complex molecular mechanisms, besides methylation disturbances, may underlie BWSp increased risk in ART pregnancies. Moreover, comparing the clinical features of ART and non-ART BWSp patients, we found that ART-BWSp patients might have a milder phenotype. Finally, our data show a progressive increase in the prevalence of BWSp over time, paralleling that of ART usage in the last decades.]]>
Wed, 31 Dec 1969 19:00:00 EST
Single cell cancer epigenetics. Casado-Pelaez M, Bueno-Costa A, Esteller M
Trends Cancer (Oct 2022)

Bulk sequencing methodologies have allowed us to make great progress in cancer research. Unfortunately, these techniques lack the resolution to fully unravel the epigenetic mechanisms that govern tumor heterogeneity. Consequently, many novel single cell-sequencing methodologies have been developed over the past decade, allowing us to explore the epigenetic components that regulate different aspects of cancer heterogeneity, namely: clonal heterogeneity, tumor microenvironment (TME), spatial organization, intratumoral differentiation programs, metastasis, and resistance mechanisms. In this review, we explore the different sequencing techniques that enable researchers to study different aspects of epigenetics (DNA methylation, chromatin accessibility, histone modifications, DNA-protein interactions, and chromatin 3D architecture) at the single cell level, their potential applications in cancer, and their current technical limitations.]]>
Wed, 31 Dec 1969 19:00:00 EST