'; ?> geneimprint : Hot off the Press http://www.geneimprint.com/site/hot-off-the-press Daily listing of the most recent articles in epigenetics and imprinting, collected from the PubMed database. en-us Sat, 09 Dec 2023 02:38:38 EST Sat, 09 Dec 2023 02:38:38 EST jirtle@radonc.duke.edu james001@jirtle.com Epigenome-Driven Strategies for Personalized Cancer Immunotherapy. Rocha GIY, Gomes JEM, Leite ML, da Cunha NB, Costa FF
Cancer Manag Res (2023)

Fighting cancer remains one of the greatest challenges for science in the 21st century. Advances in immunotherapy against different types of cancer have greatly contributed to the treatment, remission, and cure of patients. In this context, knowledge of epigenetic phenomena, their relationship with tumor cells and how the immune system can be epigenetically modulated represent some of the greatest advances in the development of anticancer therapies. Epigenetics is a rapidly growing field that studies how environmental factors can affect gene expression without altering DNA sequence. Epigenomic changes include DNA methylation, histone modifications, and non-coding RNA regulation, which impact cellular function. Epigenetics has shown promise in developing cancer therapies, such as immunotherapy, which aims to stimulate the immune system to attack cancer cells. For example, PD-1 and PD-L1 are biomarkers that regulate the immune response to cancer cells and recent studies have shown that epigenetic modifications can affect their expression, potentially influencing the efficacy of immunotherapy. New therapies targeting epigenetic modifications, such as histone deacetylases and DNA methyltransferases, are being developed for cancer treatment, and some have shown promise in preclinical studies and clinical trials. With growing understanding of epigenetic regulation, we can expect more personalized and effective cancer immunotherapies in the future. This review highlights key advances in the use of epigenetic and epigenomic tools and modern immuno-oncology strategies to treat several types of tumors.]]>
Wed, 31 Dec 1969 19:00:00 EST
Integration of datasets for individual prediction of DNA methylation-based biomarkers. Merzbacher C, Ryan B, Goldsborough T, Hillary RF, Campbell A, Murphy L, McIntosh AM, Liewald D, Harris SE, McRae AF, Cox SR, Cannings TI, Vallejos CA, McCartney DL, Marioni RE
Genome Biol (Dec 2023)

Epigenetic scores (EpiScores) can provide biomarkers of lifestyle and disease risk. Projecting new datasets onto a reference panel is challenging due to separation of technical and biological variation with array data. Normalisation can standardise data distributions but may also remove population-level biological variation.]]>
Wed, 31 Dec 1969 19:00:00 EST
Adrenergic and mesenchymal signatures are identifiable in cell-free DNA and correlate with metastatic disease burden in children with neuroblastoma. Vayani OR, Kaufman ME, Moore K, Chennakesavalu M, TerHaar R, Chaves G, Chlenski A, He C, Cohn SL, Applebaum MA
Pediatr Blood Cancer (Jan 2024)

Cell-free DNA (cfDNA) profiles of 5-hydroxymethylcytosine (5-hmC), an epigenetic marker of open chromatin and active gene expression, are correlated with metastatic disease burden in patients with neuroblastoma. Neuroblastoma tumors are comprised of adrenergic (ADRN) and mesenchymal (MES) cells, and the relative abundance of each in tumor biopsies has prognostic implications. We hypothesized that ADRN and MES-specific signatures could be quantified in cfDNA 5-hmC profiles and would augment the detection of metastatic burden in patients with neuroblastoma.]]>
Wed, 31 Dec 1969 19:00:00 EST
EpiTyping: analysis of epigenetic aberrations in parental imprinting and X-chromosome inactivation using RNA-seq. Sarel-Gallily R, Keshet G, Kinreich S, Haim-Abadi G, Benvenisty N
Nat Protoc (Dec 2023)

Human pluripotent stem cells (hPSCs) hold a central role in studying human development, in disease modeling and in regenerative medicine. These cells not only acquire genetic modifications when kept in culture, but they may also harbor epigenetic aberrations, mainly involving parental imprinting and X-chromosome inactivation. Here we present a detailed bioinformatic protocol for detecting such aberrations using RNA sequencing data. We provide a pipeline designed to process and analyze RNA sequencing data for the identification of abnormal biallelic expression of imprinted genes, and thus detect loss of imprinting. Furthermore, we show how to differentiate among X-chromosome inactivation, full activation and aberrant erosion of X chromosome in female hPSCs. In addition to providing bioinformatic tools, we discuss the impact of such epigenetic variations in hPSCs on their utility for various purposes. This pipeline can be used by any user with basic understanding of the Linux command line. It is available on GitHub as a software container ( https://github.com/Gal-Keshet/EpiTyping ) and produces reliable results in 1-4 d.]]>
Wed, 31 Dec 1969 19:00:00 EST
Canonical transcriptional gene silencing may contribute to long-term heat response and recovery through MOM1. Torres JR, Botto JF, Sanchez DH
Plant Cell Environ (Jan 2024)

Plant canonical transcriptional gene silencing (TGS) is involved in epigenetic mechanisms that mediate genomic imprinting and the suppression of transposable elements (TEs). It has been recognised that long-term heat disrupts epigenetic silencing, with the ensuing activation of TEs. However, the physiological involvement of the TGS machinery under prolonged high temperatures has not yet been established. Here, we performed non-lethal extended periodic heat stress and recovery treatments on Arabidopsis thaliana lines mutated on key TGS factors, analysing transcriptomic changes of coding-protein genes and TEs. Plants bearing MET1, DRM2 and CMT3, and MOM1 mutated alleles showed novel transcriptional properties compatible with functionalities concerning the induction/repression of partially shared or private heat-triggered transcriptome networks. Certain observations supported the idea that some responses are based on thermal de-silencing. TEs transcriptional activation uncovered the interaction with specific epigenetic layers, which may play dedicated suppressing roles under determinate physiological conditions such as heat. Furthermore, physiological experimentation suggested that MOM1 is required to resume growth after stress. Our data thus provide initial evidence that at least one canonical TGS factor may contribute to plant acclimation and recovery from non-lethal long-term heat despite the stress-induced epigenetic disturbance.]]>
Wed, 31 Dec 1969 19:00:00 EST
High-capacity sample multiplexing for single cell chromatin accessibility profiling. Booth GT, Daza RM, Srivatsan SR, McFaline-Figueroa JL, Gladden RG, Mullen AC, Furlan SN, Shendure J, Trapnell C
BMC Genomics (Dec 2023)

Single-cell chromatin accessibility has emerged as a powerful means of understanding the epigenetic landscape of diverse tissues and cell types, but profiling cells from many independent specimens is challenging and costly. Here we describe a novel approach, sciPlex-ATAC-seq, which uses unmodified DNA oligos as sample-specific nuclear labels, enabling the concurrent profiling of chromatin accessibility within single nuclei from virtually unlimited specimens or experimental conditions. We first demonstrate our method with a chemical epigenomics screen, in which we identify drug-altered distal regulatory sites predictive of compound- and dose-dependent effects on transcription. We then analyze cell type-specific chromatin changes in PBMCs from multiple donors responding to synthetic and allogeneic immune stimulation. We quantify stimulation-altered immune cell compositions and isolate the unique effects of allogeneic stimulation on chromatin accessibility specific to T-lymphocytes. Finally, we observe that impaired global chromatin decondensation often coincides with chemical inhibition of allogeneic T-cell activation.]]>
Wed, 31 Dec 1969 19:00:00 EST
Cleavage Under Targets & Release Using Nuclease (CUT&RUN) of Histone Modifications in Epidermal Stem Cells of Adult Murine Skin. Flora P, Ezhkova E
Methods Mol Biol (2024)

Cleavage Under Targets & Release Using Nuclease (CUT&RUN) has swiftly become the preferred procedure over the past few years for genomic mapping and detecting interactions between chromatin and its bound proteins. CUT&RUN is now being widely used for characterizing the epigenetic landscape in many cell types as it utilizes far less cell numbers when compared to Chromatin Immunoprecipitation-sequencing (ChIP-seq), thereby making it a powerful tool for researchers working with limited material. This protocol has been specifically optimized for detecting histone modifications in fluorescence-activated cell sorting (FACS)-isolated epidermal stem cells from adult mice.]]>
Wed, 31 Dec 1969 19:00:00 EST
Multi-omics analysis in developmental bone biology. Matsushita Y, Noguchi A, Ono W, Ono N
Jpn Dent Sci Rev (Dec 2023)

Single-cell omics and multi-omics have revolutionized our understanding of molecular and cellular biological processes at a single-cell level. In bone biology, the combination of single-cell RNA-sequencing analyses and in vivo lineage-tracing approaches has successfully identified multi-cellular diversity and dynamics of skeletal cells. This established a new concept that bone growth and regeneration are regulated by concerted actions of multiple types of skeletal stem cells, which reside in spatiotemporally distinct niches. One important subtype is endosteal stem cells that are particularly abundant in young bone marrow. The discovery of this new skeletal stem cell type has been facilitated by single-cell multi-omics, which simultaneously measures gene expression and chromatin accessibility. Using single-cell omics, it is now possible to computationally predict the immediate future state of individual cells and their differentiation potential. In vivo validation using histological approaches is the key to interpret the computational prediction. The emerging spatial omics, such as spatial transcriptomics and epigenomics, have major advantage in retaining the location of individual cells within highly complex tissue architecture. Spatial omics can be integrated with other omics to further obtain in-depth insights. Single-cell multi-omics are now becoming an essential tool to unravel intricate multicellular dynamics and intercellular interactions of skeletal cells.]]>
Wed, 31 Dec 1969 19:00:00 EST
Epigenetic modification related to cognitive changes during a cognitive training intervention in depression. Van Assche E, Hohoff C, Zang J, Knight MJ, Baune BT
Prog Neuropsychopharmacol Biol Psychiatry (Dec 2023)

DNA methylation as a biomarker is well suited to investigate dynamic processes, such as symptom improvement. For this study we focus on epigenomic state or trait markers as early signatures of cognitive improvement in individuals receiving a cognitive intervention. We performed a first epigenome-wide association study (EWAS) on patients with cognitive dysfunction in depression comparing those with vs without cognitive dysfunction and those cognitively improving vs non-improving following a cognitive intervention.]]>
Wed, 31 Dec 1969 19:00:00 EST
Evolutionary insights into 3D genome organization and epigenetic landscape of . Junaid A, Singh B, Bhatia S
Life Sci Alliance (Jan 2024)

Eukaryotic genomes show an intricate three-dimensional (3D) organization within the nucleus that regulates multiple biological processes including gene expression. Contrary to animals, understanding of 3D genome organization in plants remains at a nascent stage. Here, we investigate the evolution of 3D chromatin architecture in legumes. By using cutting-edge PacBio, Illumina, and Hi-C contact reads, we report a gap-free, chromosome-scale reference genome assembly of , an important minor legume cultivated in Southeast Asia. We spatially resolved chromosomes into euchromatic, transcriptionally active A compartment and heterochromatic, transcriptionally-dormant B compartment. We report the presence of TAD-like-regions throughout the diagonal of the HiC matrix that resembled transcriptional quiescent centers based on their genomic and epigenomic features. We observed high syntenic breakpoints but also high coverage of syntenic sequences and conserved blocks in boundary regions than in the TAD-like region domains. Our findings present unprecedented evolutionary insights into spatial 3D genome organization and epigenetic patterns and their interaction within the genome. This will aid future genomics and epigenomics research and breeding programs of .]]>
Wed, 31 Dec 1969 19:00:00 EST
Epigenomics in aortic dissection: From mechanism to therapeutics. Tao Y, Li G, Yang Y, Wang Z, Wang S, Li X, Yu T, Fu X
Life Sci (Dec 2023)

Aortic dissection (AD) has an unfavorable prognosis. It requires early diagnosis, appropriate treatment strategies, and suspicion to recognize symptoms; thus, it is commonly described as an acute aortic emergency. The clinical manifestations of painless AD are complex and variable. However, there is no effective treatment to prevent the progression of AD. Therefore, study of the molecular targets and mechanisms of AD to enable prevention or early intervention is particularly important. Although multiple gene mutations have been proposed as linked to AD development, evidence that multiple epigenetic elements are strongly associated is steadily increasing. These epigenetic processes include DNA methylation, N6-methyladenosine, histone modification, non-histone posttranslational modification, and non-coding RNAs (ncRNAs). Among these processes, resveratrol targeting Sirtuin 1 (SIRT1), 5-azacytidine (5azaC) targeting DNA methyltransferase (DNMT), and vitamin C targeting ten-eleven translocation 2 (Tet2) showed unique advantages in improving AD and vascular dysfunction. Finally, we explored potential epigenetic drugs and diagnostic methods for AD, which might provide options for the future.]]>
Wed, 31 Dec 1969 19:00:00 EST
Epigenetic switch reshapes epithelial progenitor cell signatures and drives inflammatory pathogenesis in hidradenitis suppurativa. Jin L, Chen Y, Muzaffar S, Li C, Mier-Aguilar CA, Khan J, Kashyap MP, Liu S, Srivastava R, Deshane JS, Townes TM, Elewski BE, Elmets CA, Crossman DK, Raman C, Athar M
Proc Natl Acad Sci U S A (Dec 2023)

Hidradenitis suppurativa (HS) is a complex inflammatory skin disease with undefined mechanistic underpinnings. Here, we investigated HS epithelial cells and demonstrated that HS basal progenitors modulate their lineage restriction and give rise to pathogenic keratinocyte clones, resulting in epidermal hyperproliferation and dysregulated inflammation in HS. When comparing to healthy epithelial stem/progenitor cells, in HS, we identified changes in gene signatures that revolve around the mitotic cell cycle, DNA damage response and repair, as well as cell-cell adhesion and chromatin remodeling. By reconstructing cell differentiation trajectory and CellChat modeling, we identified a keratinocyte population specific to HS. This population is marked by // and family members, triggering IL1, IL10, and complement inflammatory cascades. These signals, along with HS-specific proinflammatory cytokines and chemokines, contribute to the recruitment of certain immune cells during the disease progression. Furthermore, we revealed a previously uncharacterized role of S100A8 in regulating the local chromatin environment of target loci in HS keratinocytes. Through the integration of genomic and epigenomic datasets, we identified genome-wide chromatin rewiring alongside the switch of transcription factors (TFs), which mediated HS transcriptional profiles. Importantly, we identified numerous clinically relevant inflammatory enhancers and their coordinated TFs in HS basal CD49f cells. The disruption of the enhancer using the CRISPR/Cas9-mediated approach or the pharmacological inhibition of the interferon regulatory transcription factor 3 (IRF3) efficiently reduced the production of HS-associated inflammatory regulators. Our study not only uncovers the plasticity of epidermal progenitor cells in HS but also elucidates the epigenetic mechanisms underlying HS pathogenesis.]]>
Wed, 31 Dec 1969 19:00:00 EST
Triangulating nutrigenomics, metabolomics and microbiomics toward personalized nutrition and healthy living. Lagoumintzis G, Patrinos GP
Hum Genomics (Dec 2023)

The unique physiological and genetic characteristics of individuals influence their reactions to different dietary constituents and nutrients. This notion is the foundation of personalized nutrition. The field of nutrigenetics has witnessed significant progress in understanding the impact of genetic variants on macronutrient and micronutrient levels and the individual's responsiveness to dietary intake. These variants hold significant value in facilitating the development of personalized nutritional interventions, thereby enabling the effective translation from conventional dietary guidelines to genome-guided nutrition. Nevertheless, certain obstacles could impede the extensive implementation of individualized nutrition, which is still in its infancy, such as the polygenic nature of nutrition-related pathologies. Consequently, many disorders are susceptible to the collective influence of multiple genes and environmental interplay, wherein each gene exerts a moderate to modest effect. Furthermore, it is widely accepted that diseases emerge because of the intricate interplay between genetic predisposition and external environmental influences. In the context of this specific paradigm, the utilization of advanced "omic" technologies, including epigenomics, transcriptomics, proteomics, metabolomics, and microbiome analysis, in conjunction with comprehensive phenotyping, has the potential to unveil hitherto undisclosed hereditary elements and interactions between genes and the environment. This review aims to provide up-to-date information regarding the fundamentals of personalized nutrition, specifically emphasizing the complex triangulation interplay among microbiota, dietary metabolites, and genes. Furthermore, it highlights the intestinal microbiota's unique makeup, its influence on nutrigenomics, and the tailoring of dietary suggestions. Finally, this article provides an overview of genotyping versus microbiomics, focusing on investigating the potential applications of this knowledge in the context of tailored dietary plans that aim to improve human well-being and overall health.]]>
Wed, 31 Dec 1969 19:00:00 EST
Epigenetic programming for obesity and noncommunicable disease: From womb to tomb. Saavedra LPJ, Piovan S, Moreira VM, Gonçalves GD, Ferreira ARO, Ribeiro MVG, Peres MNC, Almeida DL, Raposo SR, da Silva MC, Barbosa LF, de Freitas Mathias PC
Rev Endocr Metab Disord (Dec 2023)

Several epidemiological, clinical and experimental studies in recent decades have shown the relationship between exposure to stressors during development and health outcomes later in life. The characterization of these susceptible phases, such as preconception, gestation, lactation and adolescence, and the understanding of factors that influence the risk of an adult individual for developing obesity, metabolic and cardiovascular diseases, is the focus of the DOHaD (Developmental Origins of Health and Disease) research line. In this sense, advancements in molecular biology techniques have contributed significantly to the understanding of the mechanisms underlying the observed phenotypes, their morphological and physiological alterations, having as a main driving factor the epigenetic modifications and their consequent modulation of gene expression. The present narrative review aimed to characterize the different susceptible phases of development and associated epigenetic modifications, and their implication in the development of non-communicable diseases. Additionally, we provide useful insights into interventions during development to counteract or prevent long-term programming for disease susceptibility.]]>
Wed, 31 Dec 1969 19:00:00 EST
Cooperative Response to Endocardial Notch Reveals Interaction With Hippo Pathway. Luna-Zurita L, Flores-Garza BG, Grivas D, Siguero-Álvarez M, de la Pompa JL
Circ Res (Dec 2023)

The endocardium is a crucial signaling center for cardiac valve development and maturation. Genetic analysis has identified several human endocardial genes whose inactivation leads to bicuspid aortic valve formation and calcific aortic valve disease, but knowledge is very limited about the role played in valve development and disease by noncoding endocardial regulatory regions and upstream factors.]]>
Wed, 31 Dec 1969 19:00:00 EST
IGF2 is upregulated by its antisense RNA to potentiate pancreatic cancer progression. Tian Y, Han W, Fu L, Zhang J, Zhou X
Funct Integr Genomics (Dec 2023)

Pancreatic cancer is a deadly cancer. More and more long noncoding RNAs (lncRNAs) have received confirmation to be dysregulated in tumors and exert the regulatory function. Studies have suggested that lncRNA insulin-like growth factor 2 antisense RNA (IGF2-AS) participates in the development of some cancers. Thus, we attempted to clarify its function in pancreatic cancer. Reverse-transcription quantitative polymerase chain reaction was applied for testing IGF2-AS expression in pancreatic cancer cells. Colony formation and Transwell wound experiments were applied for determining cell proliferative, migratory, and invasive capabilities. The alteration of epithelial-mesenchymal transition (EMT)-related gene level was tested via western blot. The mice model was established for measuring the tumor growth and metastasis. RIP validated the interaction of RNAs. IGF2-AS displays high expression in pancreatic cancer cells. IGF2-AS depletion repressed PC cell proliferative, migratory, invasive capabilities, and EMT process. Furthermore, pancreatic cancer tumor growth and metastasis were also inhibited by IGF2-AS depletion. Additionally, IGF2-AS positively regulated IGF2 level via recruiting HNRNPC. IGF2 overexpression counteracted the functions of IGF2-AS deficiency on pancreatic cancer cell behaviors. Moreover, IGF2R deletion was found to inhibit the positive effect of IGF2 on pancreatic cancer progression. IGF2-AS potentiates pancreatic cancer cell proliferation, tumor growth, and metastasis by recruiting HNRNPC via the IGF2-IGF2R regulatory pathway. These discoveries might offer a novel insight for treatment of PC, which may facilitate targeted therapies of PC in clinical practice.]]>
Wed, 31 Dec 1969 19:00:00 EST
JMnorm: a novel joint multi-feature normalization method for integrative and comparative epigenomics. Xiang G, Guo Y, Bumcrot D, Sigova A
Nucleic Acids Res (Dec 2023)

Combinatorial patterns of epigenetic features reflect transcriptional states and functions of genomic regions. While many epigenetic features have correlated relationships, most existing data normalization approaches analyze each feature independently. Such strategies may distort relationships between functionally correlated epigenetic features and hinder biological interpretation. We present a novel approach named JMnorm that simultaneously normalizes multiple epigenetic features across cell types, species, and experimental conditions by leveraging information from partially correlated epigenetic features. We demonstrate that JMnorm-normalized data can better preserve cross-epigenetic-feature correlations across different cell types and enhance consistency between biological replicates than data normalized by other methods. Additionally, we show that JMnorm-normalized data can consistently improve the performance of various downstream analyses, which include candidate cis-regulatory element clustering, cross-cell-type gene expression prediction, detection of transcription factor binding and changes upon perturbations. These findings suggest that JMnorm effectively minimizes technical noise while preserving true biologically significant relationships between epigenetic datasets. We anticipate that JMnorm will enhance integrative and comparative epigenomics.]]>
Wed, 31 Dec 1969 19:00:00 EST
Altered expression of imprinted genes in patients with cytogenetically normal‑acute myeloid leukemia: Implications for leukemogenesis and survival outcomes. Yang MY, Hsu CM, Lin PM, Yang CH, Hu ML, Chen IY, Lin SF
Mol Clin Oncol (Dec 2023)

Genomic imprinting, an epigenetic mechanism that regulates gene expression from parental chromosomes, holds substantial relevance in multiple cancers, including hematopoietic malignancies. In the present study, the expression of a panel of 16 human imprinted genes in bone marrow samples from 64 patients newly diagnosed with cytogenetically normal-acute myeloid leukemia (CN-AML) were examined alongside peripheral blood samples from 85 healthy subjects. The validated findings of the present study revealed significant upregulation of seven genes [COPI coat complex subunit gamma 2 (), H19 imprinted maternally expressed transcript (), insulin like growth factor 2 (), PEG3 antisense RNA 1 (), DNA primase subunit 2 (), solute carrier family 22 member 3 and Zinc finger protein 215 ()] in patients with CN-AML (P<0.001). Notably, the expression level of exhibited an inverse association with the survival duration of the patients (P=0.018), establishing it as a predictive marker for two- and five-year survival in patients with CN-AML. Kaplan-Meier analysis demonstrated that patients with lower expression had superior two- and five-year survival rates compared with those with higher expression. The results of the present study highlighted the association between loss of imprinting and leukemogenesis in CN-AML, underscoring the significance of imprinting loss as a prognostic indicator for unfavorable two- and five-year survival in CN-AML patients.]]>
Wed, 31 Dec 1969 19:00:00 EST
Identification of genetically predicted DNA methylation markers associated with non-small cell lung cancer risk among 34,964 cases and 448,579 controls. Zhao X, Yang M, Fan J, Wang M, Wang Y, Qin N, Zhu M, Jiang Y, Gorlova OY, Gorlov IP, Albanes D, Lam S, Tardón A, Chen C, Goodman GE, Bojesen SE, Landi MT, Johansson M, Risch A, Wichmann HE, Bickeböller H, Christiani DC, Rennert G, Arnold SM, Brennan P, Field JK, Shete S, Le Marchand L, Liu G, Hung RJ, Andrew AS, Kiemeney LA, Zienolddiny S, Grankvist K, Johansson M, Caporaso NE, Woll PJ, Lazarus P, Schabath MB, Aldrich MC, Patel AV, Davies MPA, Ma H, Jin G, Hu Z, Amos CI, Shen H, Dai J
Cancer (Dec 2023)

Although the associations between genetic variations and lung cancer risk have been explored, the epigenetic consequences of DNA methylation in lung cancer development are largely unknown. Here, the genetically predicted DNA methylation markers associated with non-small cell lung cancer (NSCLC) risk by a two-stage case-control design were investigated.]]>
Wed, 31 Dec 1969 19:00:00 EST
Clinical, genomic, and epigenomic analyses of H3K27M-mutant diffuse midline glioma long-term survivors reveal a distinct group of tumors with MAPK pathway alterations. Roberts HJ, Ji S, Picca A, Sanson M, Garcia M, Snuderl M, Schüller U, Picart T, Ducray F, Green AL, Nakano Y, Sturm D, Abdullaev Z, Aldape K, Dang D, Kumar-Sinha C, Wu YM, Robinson D, Vo JN, Chinnaiyan AM, Cartaxo R, Upadhyaya SA, Mody R, Chiang J, Baker S, Solomon D, Venneti S, Pratt D, Waszak SM, Koschmann C
Acta Neuropathol (Dec 2023)

]]>
Wed, 31 Dec 1969 19:00:00 EST