'; ?> geneimprint : Hot off the Press http://www.geneimprint.com/site/hot-off-the-press Daily listing of the most recent articles in epigenetics and imprinting, collected from the PubMed database. en-us Thu, 27 Jan 2022 09:04:07 EST Thu, 27 Jan 2022 09:04:07 EST jirtle@radonc.duke.edu james001@jirtle.com Disease category-specific annotation of variants using an ensemble learning framework. Cao Z, Huang Y, Duan R, Jin P, Qin ZS, Zhang S
Brief Bioinform (Jan 2022)

Understanding the impact of non-coding sequence variants on complex diseases is an essential problem. We present a novel ensemble learning framework-CASAVA, to predict genomic loci in terms of disease category-specific risk. Using disease-associated variants identified by GWAS as training data, and diverse sequencing-based genomics and epigenomics profiles as features, CASAVA provides risk prediction of 24 major categories of diseases throughout the human genome. Our studies showed that CASAVA scores at a genomic locus provide a reasonable prediction of the disease-specific and disease category-specific risk prediction for non-coding variants located within the locus. Taking MHC2TA and immune system diseases as an example, we demonstrate the potential of CASAVA in revealing variant-disease associations. A website (http://zhanglabtools.org/CASAVA) has been built to facilitate easily access to CASAVA scores.]]>
Wed, 31 Dec 1969 19:00:00 EST
Novel methylation mark and essential hypertension. Chaudhary M
J Genet Eng Biotechnol (Jan 2022)

Essential hypertension (EH) is an important risk factor for various cardiovascular, cerebral and renal disorders. It is a multi-factorial trait which occurs through complex interplay between genetic, epigenetic, and environmental factors. Even after advancement of technology and deciphering the involvement of multiple signalling pathways in blood pressure regulation, it still remains as a huge global concern. Genome-wide association studies (GWAS) have revealed EH-associated genetic variants but these solely cannot explain the variability in blood pressure indicating the involvement of additional factors. The etiopathogenesis of hypertension has now advanced to the level of epigenomics where aberrant DNA methylation is the most defined epigenetic mechanism to be involved in gene regulation. Though role of DNA methylation in cancer and other mechanisms is deeply studied but this mechanism is in infancy in relation to hypertension. Generally, 5-methylcytosine (5mC) levels are being targeted at both individual gene and global level to find association with the disease. But recently, with advanced sequencing techniques another methylation mark, N6-methyladenine (6mA) was found and studied in humans which was earlier considered to be absent in case of eukaryotes. Relation of aberrant 6mA levels with cancer and stem cell fate has drawn attention to target 6mA levels with hypertension too.]]>
Wed, 31 Dec 1969 19:00:00 EST
Context-dependent transcriptional regulation of microglial proliferation. Belhocine S, Machado Xavier A, Distéfano-Gagné F, Fiola S, Rivest S, Gosselin D
Glia (Mar 2022)

Microglia proliferate during brain development and brain lesions, but how this is coordinated at the transcriptional level is not well understood. Here, we investigated fundamental aspects of the transcriptional process associated with proliferation of mouse microglia during postnatal development and in adults in a model of induced microglial depletion-repopulation. While each proliferative subset displayed globally a distinct signature of gene expression, they also co-expressed a subgroup of 1370 genes at higher levels than quiescent microglia. Expression of these may be coordinated by one of two mechanisms of regulation with distinct properties. A first mechanism augments expression of genes already expressed in quiescent microglia and is subject to regulation by Klf/Sp, Nfy, and Ets transcription factors. Alternatively, a second mechanism enables de novo transcription of cell cycle genes and requires additional regulatory input from Lin54 and E2f transcription factors. Of note, transcriptional upregulation of E2f1 and E2f2 family members may represent a critical regulatory checkpoint to enable microglia to achieve efficient cell cycling. Furthermore, analysis of the activity profile of the repertoire of promoter-distal genomic regulatory elements suggests a relatively restricted role for these elements in coordinating cell cycle gene expression in microglia. Overall, proliferating microglia integrates regulation of cell cycle gene expression with their broader, context-dependent, transcriptional landscape.]]>
Wed, 31 Dec 1969 19:00:00 EST
Fine mapping with epigenetic information and 3D structure. Orozco G
Semin Immunopathol (Jan 2022)

Since 2005, thousands of genome-wide association studies (GWAS) have been published, identifying hundreds of thousands of genetic variants that increase risk of complex traits such as autoimmune diseases. This wealth of data has the potential to improve patient care, through personalized medicine and the identification of novel drug targets. However, the potential of GWAS for clinical translation has not been fully achieved yet, due to the fact that the functional interpretation of risk variants and the identification of causal variants and genes are challenging. The past decade has seen the development of great advances that are facilitating the overcoming of these limitations, by utilizing a plethora of genomics and epigenomics tools to map and characterize regulatory elements and chromatin interactions, which can be used to fine map GWAS loci, and advance our understanding of the biological mechanisms that cause disease.]]>
Wed, 31 Dec 1969 19:00:00 EST
Understanding the role of telomere attrition and epigenetic signatures in COVID-19 severity. Mahmoodpoor A, Sanaie S, Roudbari F, Sabzevari T, Sohrabifar N, Kazeminasab S
Gene (Feb 2022)

Within the past several decades, the emergence and spread of infectious diseases with pandemic potential have endangered human lives. Coronavirus disease 2019 (COVID-19) outbreak represents an unprecedented threat for all health systems worldwide. The clinical spectrum of COVID-19 is highly heterogeneous, ranging from asymptomatic and mild upper respiratory tract illness to severe interstitial pneumonia with respiratory failure and even death. Highly age-dependent patterns of immune response potentially explain the higher rates of the severe forms of COVID-19 in elderly patients. However, genetic and epigenetic architecture can influence multiple biological processes during the lifespan, therefore as far as our knowledge shows, vulnerability to viral infection concerning telomere length and epigenetic signature is not a new idea. This review aims is to summarize the current understanding of the role of telomere length and epigenetic mechanisms on the severity of COVID-19. The current knowledge highlights the significant association between the shorter telomere length and the higher risk of developing severe COVID-19. Differential DNA methylation patterns and miRNA expression profiles imply that these hallmarks can play a pivotal role in COVID- 19 pathogenesis. Understanding the causes of inter-individual variations in COVID-19 outcomes could provide clues to the development of the personalized therapeutic intervention.]]>
Wed, 31 Dec 1969 19:00:00 EST
The imprinted gene finely tunes control of feeding and growth in neonates. Glaser J, Iranzo J, Borensztein M, Marinucci M, Gualtieri A, Jouhanneau C, Teissandier A, Gaston-Massuet C, Bourc'his D
Elife (Jan 2022)

Genomic imprinting refers to the mono-allelic and parent-specific expression of a subset of genes. While long recognized for their role in embryonic development, imprinted genes have recently emerged as important modulators of postnatal physiology, notably through hypothalamus-driven functions. Here, using mouse models of loss, gain and parental inversion of expression, we report that the paternally expressed gene controls neonatal growth in mice, in a dose-sensitive but parent-of-origin-independent manner. We further found that -KO neonates failed to fully activate hypothalamic circuits that stimulate appetite, and suffered milk deprivation and diminished circulating Insulin Growth Factor 1 (IGF-1). Consequently, only half of -KO pups survived the first days after birth and those surviving were smaller. This study demonstrates that precise imprinted gene dosage is essential for vital physiological functions at the transition from intra- to extra-uterine life, here the adaptation to oral feeding and optimized body weight gain.]]>
Wed, 31 Dec 1969 19:00:00 EST
Imprinting of canine IGF2 and H19. Brabazon DC, Callanan JJ, Nolan CM
Anim Genet (Feb 2022)

Genomic imprinting occurs in therian mammals and is a phenomenon whereby the two alleles of a gene are differentially expressed, based on the sex of the parent from whom the alleles were inherited. The allelic differences in expression are the consequence of different epigenetic modifications that are established in the sperm or oocyte during gametogenesis and transmitted at fertilization to offspring. A small minority of genes is regulated in this way but they have important biological functions, and aberrant regulation of imprinted genes contributes to disease aetiology in humans and other animals. The factors driving the evolution of imprinted genes are also of considerable interest, as these genes appear to forego the benefits of diploidy. To broaden the phylogenetic analysis of genomic imprinting, we began a study of imprinted genes in the domestic dog, Canis familiaris. In this report, we show that canine IGF2 and H19 are imprinted, with parent-of origin-dependent monoallelic expression patterns in neonatal umbilical cord. We identify a putative imprint control region associated with the genes, and provide evidence for differential methylation of this region in a somatic tissue (umbilical cord) and for its hypermethylation in the male germline. Canis familiaris is fast becoming a highly informative system for elucidating disease processes and evolution, and the study of imprinted genes in this species may help in understanding how these genes contribute to the generation of morphological and behavioral diversity.]]>
Wed, 31 Dec 1969 19:00:00 EST
MEG8 regulates Tissue Factor Pathway Inhibitor 2 (TFPI2) expression in the endothelium. Kremer V, Bink DI, Stanicek L, van Ingen E, Gimbel T, Hilderink S, Günther S, Nossent AY, Boon RA
Sci Rep (Jan 2022)

A large portion of the genome is transcribed into non-coding RNA, which does not encode protein. Many long non-coding RNAs (lncRNAs) have been shown to be involved in important regulatory processes such as genomic imprinting and chromatin modification. The 14q32 locus contains many non-coding RNAs such as Maternally Expressed Gene 8 (MEG8). We observed an induction of this gene in ischemic heart disease. We investigated the role of MEG8 specifically in endothelial function as well as the underlying mechanism. We hypothesized that MEG8 plays an important role in cardiovascular disease via epigenetic regulation of gene expression. Experiments were performed in human umbilical vein endothelial cells (HUVECs). In vitro silencing of MEG8 resulted in impaired angiogenic sprouting. More specifically, total sprout length was reduced as was proliferation, while migration was unaffected. We performed RNA sequencing to assess changes in gene expression after loss of MEG8. The most profoundly regulated gene, Tissue Factor Pathway Inhibitor 2 (TFPI2), was fivefold increased following MEG8 silencing. TFPI2 has previously been described as an inhibitor of angiogenesis. Mechanistically, MEG8 silencing resulted in a reduction of the inhibitory histone modification H3K27me3 at the TFPI2 promoter. Interestingly, additional silencing of TFPI2 partially restored angiogenic sprouting capacity but did not affect proliferation of MEG8 silenced cells. In conclusion, silencing of MEG8 impairs endothelial function, suggesting a potential beneficial role in maintaining cell viability. Our study highlights the MEG8/TFPI2 axis as potential therapeutic approach to improve angiogenesis following ischemia.]]>
Wed, 31 Dec 1969 19:00:00 EST
ImprintSeq, a novel tool to interrogate DNA methylation at human imprinted regions and diagnose multilocus imprinting disturbance. Ochoa E, Lee S, Lan-Leung B, Dias RP, Ong KK, Radley JA, Pérez de Nanclares G, Martinez R, Clark G, Martin E, Castaño L, Bottolo L, Maher ER
Genet Med (Feb 2022)

Disruptions of genomic imprinting are associated with congenital imprinting disorders (CIDs) and other disease states, including cancer. CIDs are most often associated with altered methylation at imprinted differentially methylated regions (iDMRs). In some cases, multiple iDMRs are affected causing multilocus imprinting disturbances (MLIDs). The availability of accurate, quantitative, and scalable high-throughput methods to interrogate multiple iDMRs simultaneously would enhance clinical diagnostics and research.]]>
Wed, 31 Dec 1969 19:00:00 EST
Arsenic and Human Health: Genotoxicity, Epigenomic Effects, and Cancer Signaling. Ozturk M, Metin M, Altay V, Bhat RA, Ejaz M, Gul A, Unal BT, Hasanuzzaman M, Nibir L, Nahar K, Bukhari A, Dervash MA, Kawano T
Biol Trace Elem Res (Mar 2022)

Arsenic is a well-known element because of its toxicity. Humans as well as plants and animals are negatively affected by its exposure. Some countries suffer from high levels of arsenic in their tap water and soils, which is considered a primary arsenic-linked risk factor for living beings. Humans generally get exposed to arsenic by contaminated drinking waters, resulting in many health problems, ranging from cancer to skin diseases. On the other hand, the FDA-certified drug arsenic trioxide provides solutions for various diseases, including several types of cancers. This issue emphasizes the importance of speciation of the metalloid elements in terms of impacts on health. When species get exposed to arsenic, it affects the cells altering their involvement. It can lead to abnormalities in inflammatory mechanisms and the immune system which contribute to the negative impacts generated on the body. The poisoning originating from arsenic gives rise to various biological signs on the body which can be useful for the diagnosis. It is important to find true biomarkers for the detection of arsenic poisoning. In view of its application in medicine and biology, studies on understanding the biological activity of arsenic have increased. In this review, we aim at summarizing the current state of knowledge of arsenic and the mechanism behind its toxicity including genotoxicity, oxidative insults, epigenomic changes, and alterations in cellular signaling.]]>
Wed, 31 Dec 1969 19:00:00 EST
Precision cardiovascular medicine: artificial intelligence and epigenetics for the pathogenesis and prediction of coarctation in neonates. Bahado-Singh RO, Vishweswaraiah S, Aydas B, Yilmaz A, Saiyed NM, Mishra NK, Guda C, Radhakrishna U
J Matern Fetal Neonatal Med (Feb 2022)

Advances in omics and computational Artificial Intelligence (AI) have been said to be key to meeting the objectives of precision cardiovascular medicine. The focus of precision medicine includes a better assessment of disease risk and understanding of disease mechanisms. Our objective was to determine whether significant epigenetic changes occur in isolated, non-syndromic CoA. Further, we evaluated the AI analysis of DNA methylation for the prediction of CoA.]]>
Wed, 31 Dec 1969 19:00:00 EST
Diverse DNA modification in marine prokaryotic and viral communities. Hiraoka S, Sumida T, Hirai M, Toyoda A, Kawagucci S, Yokokawa T, Nunoura T
Nucleic Acids Res (Jan 2022)

DNA chemical modifications, including methylation, are widespread and play important roles in prokaryotes and viruses. However, current knowledge of these modification systems is severely biased towards a limited number of culturable prokaryotes, despite the fact that a vast majority of microorganisms have not yet been cultured. Here, using single-molecule real-time sequencing, we conducted culture-independent 'metaepigenomic' analyses (an integrated analysis of metagenomics and epigenomics) of marine microbial communities. A total of 233 and 163 metagenomic-assembled genomes (MAGs) were constructed from diverse prokaryotes and viruses, respectively, and 220 modified motifs and 276 DNA methyltransferases (MTases) were identified. Most of the MTase genes were not genetically linked with the endonuclease genes predicted to be involved in defense mechanisms against extracellular DNA. The MTase-motif correspondence found in the MAGs revealed 10 novel pairs, 5 of which showed novel specificities and experimentally confirmed the catalytic specificities of the MTases. We revealed novel alternative specificities in MTases that are highly conserved in Alphaproteobacteria, which may enhance our understanding of the co-evolutionary history of the methylation systems and the genomes. Our findings highlight diverse unexplored DNA modifications that potentially affect the ecology and evolution of prokaryotes and viruses in nature.]]>
Wed, 31 Dec 1969 19:00:00 EST
Progress in soybean functional genomics over the past decade. Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z
Plant Biotechnol J (Feb 2022)

Soybean is one of the most important oilseed and fodder crops. Benefiting from the efforts of soybean breeders and the development of breeding technology, large number of germplasm has been generated over the last 100 years. Nevertheless, soybean breeding needs to be accelerated to meet the needs of a growing world population, to promote sustainable agriculture and to address future environmental changes. The acceleration is highly reliant on the discoveries in gene functional studies. The release of the reference soybean genome in 2010 has significantly facilitated the advance in soybean functional genomics. Here, we review the research progress in soybean omics (genomics, transcriptomics, epigenomics and proteomics), germplasm development (germplasm resources and databases), gene discovery (genes that are responsible for important soybean traits including yield, flowering and maturity, seed quality, stress resistance, nodulation and domestication) and transformation technology during the past decade. At the end, we also briefly discuss current challenges and future directions.]]>
Wed, 31 Dec 1969 19:00:00 EST
Inhibition of EZH2 transactivation function sensitizes solid tumors to genotoxic stress. Liao Y, Chen CH, Xiao T, de la Peña Avalos B, Dray EV, Cai C, Gao S, Shah N, Zhang Z, Feit A, Xue P, Liu Z, Yang M, Lee JH, Xu H, Li W, Mei S, Pierre RS, Shu S, Fei T, Duarte M, Zhao J, Bradner JE, Polyak K, Kantoff PW, Long H, Balk SP, Liu XS, Brown M, Xu K
Proc Natl Acad Sci U S A (Jan 2022)

Drugs that block the activity of the methyltransferase EZH2 are in clinical development for the treatment of non-Hodgkin lymphomas harboring EZH2 gain-of-function mutations that enhance its polycomb repressive function. We have previously reported that EZH2 can act as a transcriptional activator in castration-resistant prostate cancer (CRPC). Now we show that EZH2 inhibitors can also block the transactivation activity of EZH2 and inhibit the growth of CRPC cells. Gene expression and epigenomics profiling of cells treated with EZH2 inhibitors demonstrated that in addition to derepressing gene expression, these compounds also robustly down-regulate a set of DNA damage repair (DDR) genes, especially those involved in the base excision repair (BER) pathway. Methylation of the pioneer factor FOXA1 by EZH2 contributes to the activation of these genes, and interaction with the transcriptional coactivator P300 via the transactivation domain on EZH2 directly turns on the transcription. In addition, CRISPR-Cas9-mediated knockout screens in the presence of EZH2 inhibitors identified these BER genes as the determinants that underlie the growth-inhibitory effect of EZH2 inhibitors. Interrogation of public data from diverse types of solid tumors expressing wild-type EZH2 demonstrated that expression of DDR genes is significantly correlated with EZH2 dependency and cellular sensitivity to EZH2 inhibitors. Consistent with these findings, treatment of CRPC cells with EZH2 inhibitors dramatically enhances their sensitivity to genotoxic stress. These studies reveal a previously unappreciated mechanism of action of EZH2 inhibitors and provide a mechanistic basis for potential combination cancer therapies.]]>
Wed, 31 Dec 1969 19:00:00 EST
Sirtuin 7 super-enhancer drives epigenomic reprogramming in hepatocarcinogenesis. Wu F, Xu L, Tu Y, Cheung OK, Szeto LL, Mok MT, Yang W, Kang W, Cao Q, Lai PB, Chan SL, Tan P, Sung JJ, Yip KY, Cheng AS, To KF
Cancer Lett (01 2022)

Hepatocellular carcinoma (HCC) is a major cancer burden worldwide with increasing incidence in many developed countries. Super-enhancers (SEs) drive gene expressions required for cell type-specificity and tumor cell identity. However, their roles in HCC remain unclear because of data scarcity from primary tumors. Herein, chromatin profiling of non-alcoholic fatty liver disease (NAFLD)-associated HCCs and matched liver tissues uncovered an average of ∼500 somatically-acquired SEs per patient. The identified SE-target genes were functionally enriched for aberrant metabolism and cancer phenotypes, especially chromatin regulators including deacetylases and Polycomb repressive complexes. Notably, all examined tumors exhibited SE activation of Sirtuin 7 (SIRT7), genome-wide promoter H3K18 deacetylation and concurrent H3K27me3, as well as tumor-suppressor gene silencing. Depletion of SIRT7 SE in hepatoma cells induced global H3K18 acetylation and reactivated key metabolic and immune regulators, leading to marked suppression of tumorigenicity in vitro and in vivo. In concordance, SIRT7 physically interacted with the methyltransferase EZH2, and they were co-expressed in primary HCCs. In summary, our integrative analysis establishes a compendium of SEs in NAFLD-associated HCCs and uncovers SIRT7-driven chromatin regulatory network as potential druggable vulnerability of this increasingly prevalent cancer.]]>
Wed, 31 Dec 1969 19:00:00 EST
Global DNA Methylation in Dental Implant Failure Due to Peri-Implantitis: An Exploratory Clinical Pilot Study. Khouly I, Pardiñas López S, Díaz Prado SM, Ferrantino L, Kalm J, Larsson L, Asa'ad F
Int J Environ Res Public Health (Jan 2022)

Peri-implantitis (PIT) is highly prevalent in patients with dental implants and is a challenging condition to treat due to the limited outcomes reported for non-surgical and surgical therapies. Therefore, epigenetic therapeutics might be of key importance to treat PIT. However, developing epigenetic therapeutics is based on understanding the relationship between epigenetics and disease. To date, there is still scarce knowledge about the relationship between epigenetic modifications and PIT, which warrants further investigations.]]>
Wed, 31 Dec 1969 19:00:00 EST
Epigenome guided crop improvement: current progress and future opportunities. Zhang Y, Andrews H, Eglitis-Sexton J, Godwin I, Tanurdžić M, Crisp PA
Emerg Top Life Sci (Jan 2022)

Epigenomics encompasses a broad field of study, including the investigation of chromatin states, chromatin modifications and their impact on gene regulation; as well as the phenomena of epigenetic inheritance. The epigenome is a multi-modal layer of information superimposed on DNA sequences, instructing their usage in gene expression. As such, it is an emerging focus of efforts to improve crop performance. Broadly, this might be divided into avenues that leverage chromatin information to better annotate and decode plant genomes, and into complementary strategies that aim to identify and select for heritable epialleles that control crop traits independent of underlying genotype. In this review, we focus on the first approach, which we term 'epigenome guided' improvement. This encompasses the use of chromatin profiles to enhance our understanding of the composition and structure of complex crop genomes. We discuss the current progress and future prospects towards integrating this epigenomic information into crop improvement strategies; in particular for CRISPR/Cas9 gene editing and precision genome engineering. We also highlight some specific opportunities and challenges for grain and horticultural crops.]]>
Wed, 31 Dec 1969 19:00:00 EST
CEND1 and miR885 methylation changes associated with successful cognitive aging in community-dwelling older adults. Park J, Lee Y, Won CW
Exp Gerontol (Jan 2022)

Age-related cognitive decline (ARCD) leads to deterioration of the quality of life in the elderly. Because emerging evidence suggests age-related illness is associated with gene regulation, it is necessary to understand the factors related to ARCD from an epigenetic perspective to aim for successful cognitive aging (SCA). This study aimed to identify biomarkers for SCA by comparing peripheral blood DNA methylation profiles of community-dwelling older adults with SCA and normal cognitive aging (NCA). We selected 14 SCA participants with scores for all cognitive functions (four domains, namely global cognitive, memory, attention, and executive function) above the average of normative values in Korean older adults and 15 NCA participants from the Korean Frailty Aging Cohort Study (KFACS). We performed methylation microarrays to compare the level of DNA methylation at CpG sites in the SCA and NCA groups. We also validated our findings using gene expression analysis. We found significant differences in eight differentially methylated genes (DMGs)-two hypermethylated genes (IL26 and LOC101060542) and six hypomethylated genes (CEND1, GNAT2, SNORD95, miR885, LOC255167, and HK2). CEND1 (fold change = 5.67) and miR885 (fold change = 8.91) were validated as having significantly different gene expressions between the SCA and NCA groups. Therefore, we postulate them to be potentially promising biomarkers to explain SCA attainment. These findings provide preliminary evidence for understanding SCA and assessing cognitive health in aging.]]>
Wed, 31 Dec 1969 19:00:00 EST
Analysis and Performance Assessment of the Whole Genome Bisulfite Sequencing Data Workflow: Currently Available Tools and a Practical Guide to Advance DNA Methylation Studies. Gong T, Borgard H, Zhang Z, Chen S, Gao Z, Deng Y
Small Methods (Jan 2022)

DNA methylation is associated with transcriptional repression, genomic imprinting, stem cell differentiation, embryonic development, and inflammation. Aberrant DNA methylation can indicate disease states, including cancer and neurological disorders. Therefore, the prevalence and location of 5-methylcytosine in the human genome is a topic of interest. Whole-genome bisulfite sequencing (WGBS) is a high-throughput method for analyzing DNA methylation. This technique involves library preparation, alignment, and quality control. Advancements in epigenetic technology have led to an increase in DNA methylation studies. This review compares the detailed experimental methodology of WGBS using accessible and up-to-date analysis tools. Practical codes for WGBS data processing are included as a general guide to assist progress in DNA methylation studies through a comprehensive case study.]]>
Wed, 31 Dec 1969 19:00:00 EST
ChromoMap: an R package for interactive visualization of multi-omics data and annotation of chromosomes. Anand L, Rodriguez Lopez CM
BMC Bioinformatics (Jan 2022)

The recent advancements in high-throughput sequencing have resulted in the availability of annotated genomes, as well as of multi-omics data for many living organisms. This has increased the need for graphic tools that allow the concurrent visualization of genomes and feature-associated multi-omics data on single publication-ready plots.]]>
Wed, 31 Dec 1969 19:00:00 EST