'; ?> geneimprint : Hot off the Press http://www.geneimprint.com/site/hot-off-the-press Daily listing of the most recent articles in epigenetics and imprinting, collected from the PubMed database. en-us Tue, 25 Jul 2017 21:21:53 PDT Tue, 25 Jul 2017 21:21:53 PDT jirtle@radonc.duke.edu james001@jirtle.com The Epigenomic Revolution in Breast Cancer: From Single-Gene to Genome-Wide Next-Generation Approaches. Davalos V, Martinez-Cardus A, Esteller M
Am J Pathol (Jul 2017)

From the first identification of aberrant DNA methylation in primary human tumors more than three decades ago, exponential progress in cancer epigenetics research has been made. For many years, cancer epigenetics studies relied on identification of DNA methylation and histone modifications at specific genes. These studies laid the foundation for the field and revealed the epigenetic alterations as hallmark of cancer, as well as the crucial role of epigenetic mechanisms in tumorigenesis. The introduction of next-generation sequencing and array-based technologies for analyzing epigenetic states has accelerated our understanding about cancer and nowadays have become potent tools in our fight against the disease. Findings emerging from epigenome-wide analyses have led to new discoveries with remarkable clinical applications. This review summarizes gene-specific epigenetic alterations commonly occurring in breast cancer and discusses the recent advances in breast cancer epigenomics, focusing on their contribution to diagnosis, prognosis, patient stratification, and treatment of the disease.]]>
Sun, 23 Jul 2017 00:00:00 PDT
Multimodal Regulation of Cardiac Myocyte Proliferation. Yuan X, Braun T
Circ Res (Jul 2017)

Efficient cardiac regeneration is closely associated with the ability of cardiac myocytes to proliferate. Fetal or neonatal mouse hearts containing proliferating cardiac myocytes regenerate even extensive injuries, whereas adult hearts containing mostly post-mitotic cardiac myocytes have lost this ability. The same correlation is seen in some homoiotherm species such as teleost fish and urodelian amphibians leading to the hypothesis that cardiac myocyte proliferation is a major driver of heart regeneration. Although cardiomyocyte proliferation might not be the only prerequisite to restore full organ function after cardiac damage, induction of cardiac myocyte proliferation is an attractive therapeutic option to cure the injured heart and prevent heart failure. To (re)initiate cardiac myocyte proliferation in adult mammalian hearts, a thorough understanding of the molecular circuitry governing cardiac myocyte cell cycle regulation is required. Here, we review the current knowledge in the field focusing on the withdrawal of cardiac myocytes from the cell cycle during the transition from neonatal to adult stages.]]>
Fri, 21 Jul 2017 00:00:00 PDT
Histone demethylase JMJD2C: epigenetic regulators in tumors. Zhang C, Wang Z, Ji Q, Li Q
Oncotarget (Jul 2017)

Histone methylation is one of the major epigenetic modifications, and various histone methylases and demethylases participate in the epigenetic regulating. JMJD2C has been recently identified as one of the histone lysine demethylases. As one member of the Jumonji-C histone demethylase family, JMJD2C has the ability to demethylate tri- or di-methylated histone 3 and 2 in either K9 (lysine residue 9) or K36 (lysine residue 36) sites by an oxidative reaction, thereby affecting heterochromatin formation, genomic imprinting, X-chromosome inactivation, and transcriptional regulation of genes. JMJD2C was firstly found to involve in embryonic development and stem cell regulation. Afterwards, aberrant status of JMJD2C histone methylation was observed during the formation and development of various tumors, and it has been reported to play crucial roles in the progression of breast cancer, prostate carcinomas, osteosarcoma, blood neoplasms and so on, indicating that JMJD2C represents a promising anti-cancer target. In this review, we will focus on the research progress and prospect of JMJD2C in tumors, and provide abundant evidence for the functional application and therapeutic potential of targeting JMJD2C in tumors.]]>
Fri, 21 Jul 2017 00:00:00 PDT
Genomics and epigenomics in rheumatic diseases: what do they provide in terms of diagnosis and disease management? Castro-Santos P, Díaz-Peña R
Clin Rheumatol (Jul 2017)

Most rheumatic diseases are complex or multifactorial entities with pathogeneses that interact with both multiple genetic factors and a high number of diverse environmental factors. Knowledge of the human genome sequence and its diversity among populations has provided a crucial step forward in our understanding of genetic diseases, identifying many genetic loci or genes associated with diverse phenotypes. In general, susceptibility to autoimmunity is associated with multiple risk factors, but the mechanism of the environmental component influence is poorly understood. Studies in twins have demonstrated that genetics do not explain the totality of the pathogenesis of rheumatic diseases. One method of modulating gene expression through environmental effects is via epigenetic modifications. These techniques open a new field for identifying useful new biomarkers and therapeutic targets. In this context, the development of "-omics" techniques is an opportunity to progress in our knowledge of complex diseases, impacting the discovery of new potential biomarkers suitable for their introduction into clinical practice. In this review, we focus on the recent advances in the fields of genomics and epigenomics in rheumatic diseases and their potential to be useful for the diagnosis, follow-up, and treatment of these diseases. The ultimate aim of genomic studies in any human disease is to understand its pathogenesis, thereby enabling the prediction of the evolution of the disease to establish new treatments and address the development of personalized therapies.]]>
Thu, 20 Jul 2017 00:00:00 PDT
Health, wealth and behavioural change: an exploration of role responsibilities in the wake of epigenetics. Vears DF, D'Abramo F
J Community Genet (Jul 2017)

The field of epigenetics is leading to new conceptualizations of the role of environmental factors in health and genetic disease. Although more evidence is required, epigenetic mechanisms are being implicated in the link between low socioeconomic status and poor health status. Epigenetic phenomena work in a number of ways: they can be established early in development, transmitted from previous generations and/or responsive to environmental factors. Knowledge about these types of epigenetic traits might therefore allow us to move away from a genetic deterministic perspective, and provide individuals with the opportunity to change their health status. Although this could be equated with patient empowerment, it could also lead to stigmatization and discrimination where individuals are deemed responsible for their health, even if they are not in social situations where they are able to enact change that would alter their health status. In this paper, we will explore the responsibilities of different actors in the healthcare sphere in relation to epigenetics across four different contexts: (1) genetic research, (2) clinical practice, (3) prenatal care and (4) the workplace. Within this exploration of role responsibilities, we will also discuss the potential constraints that might prevent the patient, mother-to-be, research participant or employee, from enacting any necessary steps in order to increase their health status in response to epigenetic information.]]>
Thu, 20 Jul 2017 00:00:00 PDT
Novel promoters and coding first exons in DLG2 linked to developmental disorders and intellectual disability. Reggiani C, Coppens S, Sekhara T, Dimov I, Pichon B, Lufin N, Addor MC, Belligni EF, Digilio MC, Faletra F, Ferrero GB, Gerard M, Isidor B, Joss S, Niel-Bütschi F, Perrone MD, Petit F, Renieri A, Romana S, Topa A, Vermeesch JR, Lenaerts T, Casimir G, Abramowicz M, Bontempi G, Vilain C, Deconinck N, Smits G
Genome Med (Jul 2017)

Tissue-specific integrative omics has the potential to reveal new genic elements important for developmental disorders.]]>
Thu, 20 Jul 2017 00:00:00 PDT
Protective Effects of Human Chorionic Gonadotropin Against Breast Cancer: How Can We Use This Information to Prevent/Treat the Disease? Rao CV
Reprod Sci (Aug 2017)

Breast cancers (BCs) are the most common malignancies among women worldwide. Giving birth to a first child before 24 years of age decreases the BC risk by about half, when women reach menopausal years. The scientific evidence suggests that the actions of human chorionic gonadotropin (hCG) are responsible for this decrease. Human BC cells and tissues contain hCG/luteinizing hormone receptors. The activation of the receptors results in an increase in cell differentiation and apoptosis. Conversely, it decreases the cell proliferation, invasion, and survival. The hCG actions are primarily cyclic adenosine monophosphate/protein kinase A mediated, require the presence of receptors, and involve blocking the activation and nuclear translocation of the transcription factor, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). The women with a higher hCG levels during pregnancy tend to have a lower BC incidence and those with the receptor-positive tumors have a longer metastasis-free survival. The long-term benefits of pregnancy/hCG seem to come from permanent signature genomic imprinting and expression changes, which are characterized by low cell proliferation, increased efficiency of DNA repair mechanisms, cell differentiation, and cells resistance to carcinogenesis. These findings could provide clinical opportunities to use hCG for the prevention of BC in this modern era of increasing number of young women in our societies waiting longer than ever to have their first child. In addition, hCG may be useful to reduce and/or eliminate cellular targets of carcinogenic changes during an active ongoing disease.]]>
Tue, 18 Jul 2017 00:00:00 PDT
Global analysis of DNA methylation in young (J1) and senescent (J2) Gossypium hirsutum L. cotyledons by MeDIP-Seq. Dou L, Jia X, Wei H, Fan S, Wang H, Guo Y, Duan S, Pang C, Yu S
PLoS One (2017)

DNA methylation is an important epigenetic modification regulating gene expression, genomic imprinting, transposon silencing and chromatin structure in plants and plays an important role in leaf senescence. However, the DNA methylation pattern during Gossypium hirsutum L. cotyledon senescence is poorly understood. In this study, global DNA methylation patterns were compared between two cotyledon development stages, young (J1) and senescence (J2), using methylated DNA immunoprecipitation (MeDIP-Seq). Methylated cytosine occurred mostly in repeat elements, especially LTR/Gypsy in both J1 and J2. When comparing J1 against J2, there were 1222 down-methylated genes and 623 up-methylated genes. Methylated genes were significantly enriched in carbohydrate metabolism, biosynthesis of other secondary metabolites and amino acid metabolism pathways. The global DNA methylation level decreased from J1 to J2, especially in gene promoters, transcriptional termination regions and regions around CpG islands. We further investigated the expression patterns of 9 DNA methyltransferase-associated genes and 2 DNA demethyltransferase-associated genes from young to senescent cotyledons, which were down-regulated during cotyledon development. In this paper, we first reported that senescent cotton cotyledons exhibited lower DNA methylation levels, primarily due to decreased DNA methyltransferase activity and which also play important role in regulating secondary metabolite process.]]>
Mon, 17 Jul 2017 00:00:00 PDT
Epigenetic silencing of MLH1 in endometrial cancers is associated with larger tumor volume, increased rate of lymph node positivity and reduced recurrence-free survival. Cosgrove CM, Cohn DE, Hampel H, Frankel WL, Jones D, McElroy JP, Suarez AA, Zhao W, Chen W, Salani R, Copeland LJ, O'Malley DM, Fowler JM, Yilmaz A, Chassen AS, Pearlman R, Goodfellow PJ, Backes FJ
Gynecol Oncol (Jul 2017)

To determine the relationship between mismatch repair (MMR) classification and clinicopathologic features including tumor volume, and explore outcomes by MMR class in a contemporary cohort.]]>
Sat, 15 Jul 2017 00:00:00 PDT
'Omics' and endocrine-disrupting chemicals - new paths forward. Messerlian C, Martinez RM, Hauser R, Baccarelli AA
Nat Rev Endocrinol (Jul 2017)

The emerging field of omics - large-scale data-rich biological measurements of the genome - provides new opportunities to advance and strengthen research into endocrine-disrupting chemicals (EDCs). Although some EDCs have been associated with adverse health effects in humans, our understanding of their impact remains incomplete. Progress in the field has been primarily limited by our inability to adequately estimate and characterize exposure and identify sensitive and measurable outcomes during windows of vulnerability. Evolving omics technologies in genomics, epigenomics and mitochondriomics have the potential to generate data that enhance exposure assessment to include the exposome - the totality of the lifetime exposure burden - and provide biology-based estimates of individual risks. Applying omics technologies to expand our knowledge of individual risk and susceptibility will augment biological data in the prediction of variability and response to disease, thereby further advancing EDC research. Together, refined exposure characterization and enhanced disease-risk prediction will help to bridge crucial gaps in EDC research and create opportunities to move the field towards a new vision - precision public health.]]>
Fri, 14 Jul 2017 00:00:00 PDT
Do social insects support Haig's kin theory for the evolution of genomic imprinting? Pegoraro M, Marshall H, Lonsdale ZN, Mallon EB
Epigenetics (Jul 2017)

Although numerous imprinted genes have been described in several lineages, the phenomenon of genomic imprinting presents a peculiar evolutionary problem. Several hypotheses have been proposed to explain gene imprinting, the most supported being Haig's kinship theory. This theory explains the observed pattern of imprinting and the resulting phenotypes as a competition for resources between related individuals, but despite its relevance it has not been independently tested. Haig's theory predicts that gene imprinting should be present in eusocial insects in many social scenarios. These lineages are therefore ideal for testing both the theory's predictions and the mechanism of gene imprinting. Here we review the behavioural evidence of genomic imprinting in eusocial insects, the evidence of a mechanism for genomic imprinting and finally we evaluate recent results showing parent of origin allele specific expression in honeybees in the light of Haig's theory.]]>
Thu, 13 Jul 2017 00:00:00 PDT
Systematic identification and characterization of regulatory elements derived from human endogenous retroviruses. Ito J, Sugimoto R, Nakaoka H, Yamada S, Kimura T, Hayano T, Inoue I
PLoS Genet (Jul 2017)

Human endogenous retroviruses (HERVs) and other long terminal repeat (LTR)-type retrotransposons (HERV/LTRs) have regulatory elements that possibly influence the transcription of host genes. We systematically identified and characterized these regulatory elements based on publicly available datasets of ChIP-Seq of 97 transcription factors (TFs) provided by ENCODE and Roadmap Epigenomics projects. We determined transcription factor-binding sites (TFBSs) using the ChIP-Seq datasets and identified TFBSs observed on HERV/LTR sequences (HERV-TFBSs). Overall, 794,972 HERV-TFBSs were identified. Subsequently, we identified "HERV/LTR-shared regulatory element (HSRE)," defined as a TF-binding motif in HERV-TFBSs, shared within a substantial fraction of a HERV/LTR type. HSREs could be an indication that the regulatory elements of HERV/LTRs are present before their insertions. We identified 2,201 HSREs, comprising specific associations of 354 HERV/LTRs and 84 TFs. Clustering analysis showed that HERV/LTRs can be grouped according to the TF binding patterns; HERV/LTR groups bounded to pluripotent TFs (e.g., SOX2, POU5F1, and NANOG), embryonic endoderm/mesendoderm TFs (e.g., GATA4/6, SOX17, and FOXA1/2), hematopoietic TFs (e.g., SPI1 (PU1), GATA1/2, and TAL1), and CTCF were identified. Regulatory elements of HERV/LTRs tended to locate nearby and/or interact three-dimensionally with the genes involved in immune responses, indicating that the regulatory elements play an important role in controlling the immune regulatory network. Further, we demonstrated subgroup-specific TF binding within LTR7, LTR5B, and LTR5_Hs, indicating that gains or losses of the regulatory elements occurred during genomic invasions of the HERV/LTRs. Finally, we constructed dbHERV-REs, an interactive database of HERV/LTR regulatory elements (http://herv-tfbs.com/). This study provides fundamental information in understanding the impact of HERV/LTRs on host transcription, and offers insights into the transcriptional modulation systems of HERV/LTRs and ancestral HERVs.]]>
Wed, 12 Jul 2017 00:00:00 PDT
The epigenomics of schizophrenia, in the mouse. Javidfar B, Park R, Kassim BS, Bicks LK, Akbarian S
Am J Med Genet B Neuropsychiatr Genet (Jul 2017)

Large-scale consortia including the Psychiatric Genomics Consortium, the Common Minds Consortium, BrainSeq and PsychENCODE, and many other studies taken together provide increasingly detailed insights into the genetic and epigenetic risk architectures of schizophrenia (SCZ) and offer vast amounts of molecular information, but with largely unexplored therapeutic potential. Here we discuss how epigenomic studies in human brain could guide animal work to test the impact of disease-associated alterations in chromatin structure and function on cognition and behavior. For example, transcription factors such as MYOCYTE-SPECIFIC ENHANCER FACTOR 2C (MEF2C), or multiple regulators of the open chromatin mark, methyl-histone H3-lysine 4, are associated with the genetic risk architectures of common psychiatric disease and alterations in chromatin structure and function in diseased brain tissue. Importantly, these molecules also affect cognition and behavior in genetically engineered mice, including virus-mediated expression changes in prefrontal cortex (PFC) and other key nodes in the circuitry underlying psychosis. Therefore, preclinical and small laboratory animal work could target genomic sequences affected by chromatin alterations in SCZ. To this end, in vivo editing of enhancer and other regulatory non-coding DNA by RNA-guided nucleases including CRISPR-Cas, and designer transcription factors, could be expected to deliver pipelines for novel therapeutic approaches aimed at improving cognitive dysfunction and other core symptoms of SCZ.]]>
Wed, 12 Jul 2017 00:00:00 PDT
Reprogramming of the Tumor in the Hypoxic Niche: The Emerging Concept and Associated Therapeutic Strategies. Qiu GZ, Jin MZ, Dai JX, Sun W, Feng JH, Jin WL
Trends Pharmacol Sci (Aug 2017)

Hypoxia exerts a profound impact on diverse aspects of cancer biology. Increasing evidence has revealed novel functions of hypoxia in cancer cell epigenomics, epitranscriptomics, metabolism, and intercellular communication, all hotspots of cancer research. Several drugs have been developed to target intratumoral hypoxia and have entered clinical trials to treat refractory tumors. However, direct targeting of hypoxia signaling still has limitations in the clinic with regard to cancer progression and resistance to therapy. Comprehensive understanding of the molecular mechanisms by which hypoxia reshapes tumors and their microenvironment, as well as how tumor cells adapt to and thrive in hypoxic conditions, will therefore continue to be a focus of cancer research and will provide new directions for hypoxic tumor treatment.]]>
Mon, 12 Jun 2017 00:00:00 PDT
Beta cell heterogeneity: an evolving concept. Avrahami D, Klochendler A, Dor Y, Glaser B
Diabetologia (Aug 2017)

Beta cells are primarily defined by their ability to produce insulin and secrete it in response to appropriate stimuli. It has been known for some time, however, that beta cells are not functionally identical to each other and that the rates of insulin synthesis and release differ from cell to cell, although the functional significance of this variability remains unclear. Recent studies have used heterogeneous gene expression to isolate and evaluate different subpopulations of beta cells and to demonstrate alterations in these subpopulations in diabetes. In the last few years, novel technologies have emerged that permit the detailed evaluation of the proteome (e.g. time-of-flight mass spectroscopy, [CyTOF]) and transcriptome (e.g. massively parallel RNA sequencing) at the single-cell level, and tools for single beta cell metabolomics and epigenomics are quickly maturing. The first wave of single beta cell proteome and transcriptome studies were published in 2016, giving a glimpse into the power, but also the limitations, of these approaches. Despite this progress, it remains unclear if the observed heterogeneity of beta cells represents stable, distinct beta cell types or, alternatively, highly dynamic beta cell states. Here we provide a concise overview of recent developments in the emerging field of beta cell heterogeneity and the implications for our understanding of beta cell biology and pathology.]]>
Fri, 09 Jun 2017 00:00:00 PDT
Disruption of NNAT, NAP1L5 and MKRN3 DNA methylation and transcription in rabbit parthenogenetic fetuses. Wang D, Liu Z, Yao H, Hao Y, Zhou L, Du J, Zhu Y, Xu Y, Wang G, Song Y, Li Z
Gene (Aug 2017)

Parthenogenetically activated oocytes cannot develop to term in mammals due to lack of paternal gene expression. Disruption of imprinted gene expression and DNA methylation status in parthenogenetic fetuses has been reported in mice and pigs, but not in rabbits. In this study, the genomic imprinting status of the paternally expressed genes Neuronatin (NNAT), Nucleosome assembly protein 1-like 5 (NAP1L5), and Makorin ring finger protein 3 (MKRN3) was compared between rabbit parthenogenetic (PA) and normally fertilized fetuses (Con) using quantitative real-time PCR (qRT-PCR) and bisulfite sequencing PCR (BSP). The results revealed a significantly reduced expression of NNAT, NAP1L5, and MKRN3 in rabbit PA fetuses compared with Con fetuses (p<0.05). In addition, the BSP results demonstrated hypermethylation in the differentially methylated regions (DMRs) of NNAT, NAP1L5, and MKRN3 in rabbit PA fetuses. Taken together, these results suggest that hypermethylation of DMRs is associated with decreased NNAT, NAP1L5, and MKRN3 expression, which may be responsible for developmental failure of rabbit PA fetuses.]]>
Sat, 20 May 2017 00:00:00 PDT
Williams syndrome deletions and duplications: Genetic windows to understanding anxiety, sociality, autism, and schizophrenia. Crespi BJ, Procyshyn TL
Neurosci Biobehav Rev (Aug 2017)

We describe and evaluate an integrative hypothesis for helping to explain the major neurocognitive features of individuals with Williams syndrome region deletions and duplications. First, we demonstrate how the cognitive differences between Williams syndrome individuals, individuals with duplications of this region, and healthy individuals parallel the differences between individuals subject to effects of increased or decreased oxytocin. Second, we synthesize evidence showing that variation in expression of the gene GTF2I (General Transcription Factor II-I) underlies the primary social phenotypes of Williams syndrome and that common genetic variation in GTF2I mediates oxytocin reactivity, and its correlates, in healthy populations. Third, we describe findings relevant to the hypothesis that the GTF2I gene is subject to parent of origin effects whose behavioral expression fits with predictions from the kinship theory of genomic imprinting. Fourth, we describe how Williams syndrome can be considered, in part, as an autistic syndrome of Lorna Wing's 'active-but-odd' autism subtype, in contrast to associations of duplications with both schizophrenia and autism.]]>
Sat, 13 May 2017 00:00:00 PDT
Omics analysis of human bone to identify genes and molecular networks regulating skeletal remodeling in health and disease. Reppe S, Datta HK, Gautvik KM
Bone (Aug 2017)

The skeleton is a metabolically active organ throughout life where specific bone cell activity and paracrine/endocrine factors regulate its morphogenesis and remodeling. In recent years, an increasing number of reports have used multi-omics technologies to characterize subsets of bone biological molecular networks. The skeleton is affected by primary and secondary disease, lifestyle and many drugs. Therefore, to obtain relevant and reliable data from well characterized patient and control cohorts are vital. Here we provide a brief overview of omics studies performed on human bone, of which our own studies performed on trans-iliacal bone biopsies from postmenopausal women with osteoporosis (OP) and healthy controls are among the first and largest. Most other studies have been performed on smaller groups of patients, undergoing hip replacement for osteoarthritis (OA) or fracture, and without healthy controls. The major findings emerging from the combined studies are: 1. Unstressed and stressed bone show profoundly different gene expression reflecting differences in bone turnover and remodeling and 2. Omics analyses comparing healthy/OP and control/OA cohorts reveal characteristic changes in transcriptomics, epigenomics (DNA methylation), proteomics and metabolomics. These studies, together with genome-wide association studies, in vitro observations and transgenic animal models have identified a number of genes and gene products that act via Wnt and other signaling systems and are highly associated to bone density and fracture. Future challenge is to understand the functional interactions between bone-related molecular networks and their significance in OP and OA pathogenesis, and also how the genomic architecture is affected in health and disease.]]>
Fri, 28 Apr 2017 00:00:00 PDT
Early detection of pancreatic cancer: Where are we now and where are we going? Zhou B, Xu JW, Cheng YG, Gao JY, Hu SY, Wang L, Zhan HX
Int J Cancer (Jul 2017)

Pancreatic cancer (PC) is one of the most lethal malignancies. Recent studies indicate that patients with incidentally diagnosed PC have better prognosis than those with symptoms and that there is a sufficient window for early detection. However, effective early diagnosis remains difficult and depends mainly on imaging modalities and the development of screening methodologies with highly sensitive and specific biomarkers. This review summarizes recent advances in effective screening for early diagnosis of PC using imaging modalities and novel molecular biomarkers discovered from various "omics" studies including genomics, epigenomics, non-coding RNA, metabonomics, liquid biopsy (CTC, ctDNA and exosomes) and microbiomes, and their use in body fluids (feces, urine and saliva). Although many biomarkers for early detection of PC have been discovered through various methods, larger scale and rigorous validation is required before their application in the clinic. In addition, more effective and specific biomarkers of PC are urgently needed.]]>
Mon, 27 Feb 2017 00:00:00 PST
Imprinted genes and the regulation of placental endocrine function: Pregnancy and beyond. John RM
Placenta (Aug 2017)

Genomic imprinting is an epigenetic process responsible for the monoallelic expression of a subset of genes in mammals. Imprinted genes have been demonstrated to play important functions prenatally regulating fetal growth and placental development with some functions persisting beyond pregnancy to influence both metabolism and behaviour in adults. This review focuses on the function of imprinted genes in regulating placental hormones, and the probability that these functions manifest their impact beyond pregnancy.]]>
Tue, 17 Jan 2017 00:00:00 PST